CC Madhya 20.189: Difference between revisions
No edit summary |
(Vanibot #0054 edit - transform synonyms into clickable links, which search similar occurrences) |
||
Line 17: | Line 17: | ||
<div class="synonyms"> | <div class="synonyms"> | ||
''ādi-catur-vyūha'' | ''[//vanipedia.org/wiki/Special:VaniSearch?s=ādi&tab=syno_o&ds=1 ādi]-[//vanipedia.org/wiki/Special:VaniSearch?s=catur&tab=syno_o&ds=1 catur]-[//vanipedia.org/wiki/Special:VaniSearch?s=vyūha&tab=syno_o&ds=1 vyūha]'' — the original quadruple group; ''[//vanipedia.org/wiki/Special:VaniSearch?s=iṅhāra&tab=syno_o&ds=1 iṅhāra]'' — of this; ''[//vanipedia.org/wiki/Special:VaniSearch?s=keha&tab=syno_o&ds=1 keha] [//vanipedia.org/wiki/Special:VaniSearch?s=nāhi&tab=syno_o&ds=1 nāhi]'' — no one; ''[//vanipedia.org/wiki/Special:VaniSearch?s=sama&tab=syno_o&ds=1 sama]'' — equal; ''[//vanipedia.org/wiki/Special:VaniSearch?s=ananta&tab=syno_o&ds=1 ananta]'' — unlimited; ''[//vanipedia.org/wiki/Special:VaniSearch?s=catur&tab=syno_o&ds=1 catur]-[//vanipedia.org/wiki/Special:VaniSearch?s=vyūha&tab=syno_o&ds=1 vyūha]-[//vanipedia.org/wiki/Special:VaniSearch?s=gaṇera&tab=syno_o&ds=1 gaṇera]'' — of the quadruple expansions; ''[//vanipedia.org/wiki/Special:VaniSearch?s=prākaṭya&tab=syno_o&ds=1 prākaṭya]'' — of manifestation; ''[//vanipedia.org/wiki/Special:VaniSearch?s=kāraṇa&tab=syno_o&ds=1 kāraṇa]'' — the cause. | ||
</div> | </div> | ||
Latest revision as of 22:38, 19 February 2024
Śrī Caitanya-caritāmṛta - Madhya-līlā - Chapter 20: Lord Śrī Caitanya Mahāprabhu Instructs Sanātana Gosvāmī in the Science of the Absolute Truth
TEXT 189
- ādi-catur-vyūha—iṅhāra keha nāhi sama
- ananta catur-vyūha-gaṇera prākaṭya-kāraṇa
SYNONYMS
ādi-catur-vyūha — the original quadruple group; iṅhāra — of this; keha nāhi — no one; sama — equal; ananta — unlimited; catur-vyūha-gaṇera — of the quadruple expansions; prākaṭya — of manifestation; kāraṇa — the cause.
TRANSLATION
“The first expansion of the caturvyūha, quadruple forms, is unique. There is nothing to compare with Them. These quadruple forms are the source of unlimited quadruple forms.